
How to Use the Python Pattern Playback System

Hahn Koo (hahn.koo@sjsu.edu)
May 28, 2022

1 Introduction
The software is designed to convert a grayscale image of the magnitude spectrogram to a waveform. This
document explains how to use it.

2 Installation
2.1 Setup
The software runs on Python 3. It uses the following libraries:

(1) sys

(2) argparse

(3) tkinter

(4) numpy

(5) scipy

(6) matplotlib

(7) pillow (PIL)

(8) librosa

(1-3) are part of the Python standard library. So you don’t need to install them separately. (4-6) are not
part of the standard library but are very common libraries people use these days. If you’ve installed Python
3 through Anaconda you should already have them. If not, see here to install them. (7-8) are not that
common. You probably should install them. See here or here for (7) and here for (8).

2.2 Download
Once you have all of the above installed, download the software from here or here. The crucial file is
pattern_playback.py. The rest are supplementary files to illustrate how to use it.

3 Command-line interface
The software has a command-line interface. So enter python pattern_playback.py followed by named
arguments and options. To see a comprehensive list of arguments and options, enter

python pattern_playback.py --help

Let me explain them further below.

1

https://www.anaconda.com/
https://scipy.org/install/
https://pillow.readthedocs.io/en/stable/installation.html
https://anaconda.org/anaconda/pillow
https://librosa.org/doc/latest/install.html
https://github.com/hahnkoo/pattern_playback
http://linguistics.sjsu.edu/~hkoo/software/pattern_playback/


3.1 --sampling_rate
This is used to specify the sampling rate to synthesize the waveform with. For example, to set the sampling
rate to 16,000 Hz,

--sampling_rate 16000

This argument must be specified.

3.2 --duration
This is used to specify the duration of the waveform to synthesize in seconds. For example, to set the
duration to 1.234 seconds,

--duration 1.234

This argument must be specified.

3.3 --load vs. --draw
You can either load a grayscale image file (e.g. PNG, JPG) containing a spectrogram or draw a spectrogram
in black and white on a blank canvas from scratch. Use --load for the former and --draw for the latter.

--load must be followed by a path to the image file you want to load. For example,

--load ./examples/example1.jpg

--draw is not followed by any argument. Just ”turn it on” as

--draw

You must specify either of the two but not both of course.

There are some optional arguments you can specify in relation to these two.

3.3.1 --crop

This can be used in tandem with --load if you want to crop image in the file via click-and-drag because, for
example, the file not only contains a spectrogram but also a figure caption. For example, to crop a portion
of an image in ./examples/example2.png,

--load ./examples/example2.png --crop

3.3.2 --canvas_width, --canvas_height, --canvas_margin

These can be used in tandem with --draw if you want to configure the canvas to draw the spectrogram on.
By default, the canvas has a width of 1200 pixels, a height of 600 pixels, and a margin of 50 pixels. The
dimensions can be modified by specifying the desired size in pixels after each named argument. For example,

--draw --canvas_width 600 --canvas_height 800

2



or

--draw --canvas_width 1600 --canvas_height 1200 --canvas_margin 100

3.3.3 --save_drawing

By default, the spectrogram you drew is saved as spectrogram.png. But you can use save_drawing in
tandem with --draw followed by a file name to save your drawing as such. For example, to save your
drawing as chirp.png instead,

--draw --save_drawing chirp.png

3.4 --griffinlim
By default, waveform is synthesized from the spectrogram via inverse short-time Fourier transform assuming
a zero-phase spectrum. To improve the output quality, one can use the Griffin-Lim algorithm instead. Just
turn the option on as follows:

--griffinlim

3.5 --show_graphs
This is to display the magnitude reconstructed from the image as well as the synthesized waveform. Just
turn it on as follows:

--show_graphs

3.6 --save_wav
By default, the synthesized waveform is saved as out.wav. The name can be changed with --save_wav
followed by the file name. For example, to save the output as chirp.wav instead,

--save_wav chirp.wav

4 Illustrations
Let me illustrate how to enter commands and what happens after you do.

4.1 Loading from an image file
Suppose you wanted to do the following:

• load image from ./examples/example1.jpg

• synthesize waveform at sampling rate = 16000 Hz with duration = 3 seconds using the Griffin-Lim
algorithm

• show the reconstructed spectrogram and waveform

• save the result as example1.wav

3



FYI, Figure 1 illustrates what the image file (downloaded from here) looks like. It contains nothing but a
spectrogram:

Figure 1:

You would enter the following command (all in one line):

python pattern_playback.py --sampling_rate 16000 --duration 3
--load ./examples/example1.jpg --griffinlim --show_graphs --save_wav example1.wav

This will bring up a window that looks like the one in Figure 2. Click the save icon if you want to save the
figure. You must click the x button at the top right corner for the software to move on, save the result, and
finish.

Figure 2:

4.2 Cropping a portion from an image file
Suppose you wanted to do the following:

• load image from ./examples/example2.png and crop a portion of it

4

https://splab.net/digital_pattern_playback/


• synthesize waveform at sampling rate = 8000 Hz with duration = 0.4 seconds using the Griffin-Lim
algorithm

• show the reconstructed spectrogram and waveform

• save the result as example2.wav

FYI, Figure 3 illustrates what the image file looks like. It’s a figure from Ladefoged and Johnson (2014) that
contains four spectrograms. Let’s say we’re interested in the third one from the left.

Figure 3:

You would enter the following command (all in one line):

python pattern_playback.py --sampling_rate 8000 --duration 0.4 --crop
--load ./examples/example2.png --griffinlim --show_graphs --save_wav example2.wav

This will first bring up a window that looks like the one in Figure 4.

Figure 4:

There are two panes in the window. The top one contains the image to crop. The bottom one is blank for

5



now but will be filled with the cropped image later.

Click and drag your mouse cursor to select a portion you want to crop. The portion will be highlighted in
pink as in Figure 5.

Figure 5:

As soon as you let go, the portion you cropped will fill in the bottom pane as in Figure 6.

Figure 6:

You can click-and-drag as often as you want to make sure you cropped it properly. When you’re satisfied,
click the x button at the top-right corner to exit the window.

The software will then open another window to display the spectrogram and the waveform for your infor-
mation as in Figure 7. If you don’t want to see this, you can simply omit --show_graphs when you enter
the command. At any rate, just like in the previous example, close the window to finish.

4.3 Drawing on a canvas
Suppose you wanted to do the following:

• draw a spectrogram from scratch and save the drawing as smiley.png

6



Figure 7:

• synthesize waveform at sampling rate = 10000 Hz with duration = 0.5 seconds assuming a zero phase
spectrum

• show the reconstructed spectrogram and waveform

• save the result as smiley.wav

You would enter the following command (all in one line):

python pattern_playback.py --sampling_rate 10000 --duration 0.5 --draw
--save_drawing smiley.png --show_graphs --save_wav smiley.wav

This will bring up a blank canvas like the one in Figure 8.

Use a pointing device (e.g. mouse, stylus, fingertip) to draw some spectrogram. Left click and drag to draw.
Right click and drag to erase. One embarrassing feature about erasing: the gridlines will be erased too.
Something to be revised in the future.

Here let me just draw a smiley face as in Figure 9.

Click the x button at the top right corner to close the canvas when you’re done drawing.

The software will then open another window to display the spectrogram and the waveform for your infor-
mation as in Figure 10. Close the window to finish off.

7



Figure 8:

Figure 9:

Figure 10:

5 Under the hood
Understanding how the software works may help you use it more effectively. Figure 11 illustrates the
software architecture. Novel components are remove_gridlines(), resize(), and interpret_as_dB().
Let me explain them below.

8



Figure 11:

5.1 remove_gridlines()
This looks for any borders – including the time and frequency axes – that surround the spectrogram in the
image and removes the boundaries as well as anything beyond them. In hindsight, I should have named it
remove_borders(). At any rate, Figure 12 illustrates how it removes borders and beyond. It tends to work
well when the borders are drawn in thin straight lines and there’s no other straight lines of similar length
beyond the borders. But it doesn’t always work unfortunately. Something I’ll try to improve in the future.
In the mean time, if the image file contains extraneous stuff, turn on --crop and take care to select just the
spectrogram as closely as possible.

Figure 12:

5.2 resize()
An image is an array of pixel values. We can’t directly apply inverse transform to it and convert it to a
waveform. Two things before we do so:

(1) resize the array

(2) convert the pixel values to magnitude spectral coefficients

resize(), explained here, is for (1). interpret_as_dB(), explained in the next section, is for (2).

Resizing is necessary because we don’t know how the image of spectrogram came to be. Somebody applied
the short-time Fourier transform (STFT) to a waveform and got an array of spectral coefficients. The shape
of the resulting array depends on what the STFT parameters were: e.g. frame size (number of samples per
analysis frame), frame shift (number of samples by which the analysis frame is shfted). They then plotted
the array and saved it as image. The shape of the array will change further in the process depending on
things like if and how intermediate values were added to make the plot look smoother, what resolution was
used in saving the plot as image, etc. We could retrace the steps if we knew all the parameters involved.
But we don’t.

So here’s a workaround: We ask the user how long the waveform is and calculate what the shape of array of
spectral coefficients would be if (a) we applied STFT with typical parameters to a waveform of such length

9



(b) while keeping the aspect ratio the same between the array of spectral coefficients and the array of pixel
values. We then resize the array of pixel values to the target shape by resampling its values. The arguments
that the user enters via --sampling_rate and --duration tell us how long the waveform is. The input
image tells us what the aspect ratio is. We use default parameters of librosa.stft() as typical parameters.

So how to calculate the target shape? Let

• (r1, c1) = shape of the original array of pixel values, i.e. r1 rows and c1 columns

• (r2, c2) = target shape, i.e. r2 rows and c2 columns

• N = number of samples in the waveform

• s = number of samples by which the analysis frame is shifted (frame shift)

We want the following to hold:

(a) r1 : c1 ≈ r2 : c2

(b) r2 is an odd number

(c) s = (r2 − 1)× 2/4

(d) N = s× (c2 − 1)

(a) because we want to keep the aspect ratio. (b-d) because they reflect default parameters in librosa.stft().

From (c) and (d),

N =
(r2 − 1)(c2 − 1)

2
(1)

From (a), we can assume

c2 =
r2c1
r1

(2)

So equation (1) becomes

N =
(r2 − 1)(r2c1 − r1)

2r1
(3)

Shuffling the terms around,

c1r
2
2 − (r1 + c1)r2 + r1 − 2Nr1 = 0 (4)

We know N, r1, c1 from the user input. So we can solve equation (4) for r2. We take the larger of the two
roots and round it to the nearest odd number because (b). We then plug r2 in to equation (2) and round it
down to the nearest integer to get c2.

resize() uses numpy.roots() to find the roots for r2 and scipy.signal.resample() to resample the pixel
values in resizing the array to the target shape.

5.3 interpret_as_dB()
The pixel values in the reshaped array are interpreted as dB values after

(1) subtracting from 255

(2) dividing by two

10

https://librosa.org/doc/main/generated/librosa.stft.html
https://numpy.org/doc/stable/reference/generated/numpy.roots.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html


Pixel values range from 0 to 255: 0 for black and 255 for white. This is the opposite of what’s expected of
spectral energy. (1) flips the values so that white means 0 dB and black means 255 dB. It turns out that
this range is too high. The difference in shade of gray gets amplified so much that less dark parts of the
spectrogram get virtually ignored in reconstructing the waveform. (2) counters this effect by reducing the
range to 0 − 127.5 dB. I felt cutting the range by half was appropriate for a number of examples I have
tried. But it may be too much or may not be enough for other examples. I may add a dB discount factor
as another command-line argument to give users more flexibility in the future. In the meantime, you can
directly modify the following line in the function definition if you’re not satisfied: e.g. change self.X / 2
to self.X / 3 to reduce the range further to 0− 85 dB.

self.X = self.X / 2

6 How to cite
If you want to cite the software,

Koo, H. (2022). A digital pattern playback system implemented in Python. Journal of the Acoustical Society
of America, 151(4), A132.

References
Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 32(2), 236-243.

Ladefoged, P., & Johnson, K. (2014). A Course in Phonetics. Cengage Learning.

11


	Introduction
	Installation
	Setup
	Download

	Command-line interface
	–sampling_rate
	–duration
	–load vs. –draw
	–crop
	–canvas_width, –canvas_height, –canvas_margin
	–save_drawing

	–griffinlim
	–show_graphs
	–save_wav

	Illustrations
	Loading from an image file
	Cropping a portion from an image file
	Drawing on a canvas

	Under the hood
	remove_gridlines()
	resize()
	interpret_as_dB()


